Coordination Polyhedra and Structure of Alloys: Binary Alloys of Vanadium with Group IIIB and IVB Elements

BY K. KRISHNA BHANDARY* AND K. GIRGIS

Institut für Kristallographie und Petrographie der ETHZ, Sonneggstrasse 5, 8092 Zürich, Switzerland

(Received 7 March 1977; accepted 3 June 1977)

Vanadium is found to exhibit a range of coordination numbers (CN) from 10 to 17 in its binary alloys with group IIIB and IVB elements. The polyhedra around V are characterized and a description in terms of symbols is offered. The structures of the binary alloys considered are described in terms of polyhedral packing. It is found that there are two types: a three-dimensional distribution of discrete polyhedra sharing corners, edges or faces and a layer-like distribution.

Introduction

A fruitful approach to understanding the crystal chemistry of alloy structures is to consider the coordination spheres around particular atoms. Frank & Kasper (1958) considered the coordination geometries around an atom as made up of only triangular faces and examined the topological and geometrical properties of the triangulated shells with CN 12, 14, 15 and 16. The characteristics of structural types with high CN have been studied by Kripyakevich (1960). He has also deduced the characteristics of polyhedra with CN 12 to 17, 20, 22 and 24.

A few papers (Brown, 1957, 1959; Girgis, Petter & Pupp, 1975) have dealt with the coordination polyhedra as building blocks of the structure. Such a description, even though not supported by any specific theory, arises from observations of the peculiarities of the structures and the most general inferences that can be drawn from them (Black, 1956). In this paper we characterize the polyhedra in various known binary alloys and use them to build up the structures. The aim is to present a simple explanation of the complex alloy structures and to systematize the different known structure types.

Coordination polyhedra

In order to define a coordination polyhedron it is essential to limit the coordination sphere of an atom (Brunner & Laves, 1971). The coordination sphere as defined by the maximum-gap concept (Brunner & Schwarzenbach, 1971) seems to be realistic (Brunner, 1977). Recently we have studied the coordination behaviour of V in its binary alloys with III B and IV B elements (Bhandary & Girgis, 1977) using the maximum-gap concept to limit the coordination sphere of V and the 'B' elements.

V exhibits a varying CN of 10 to 17 in these alloys. The various coordination geometries are listed in Table 1. The symmetry given is that found for the figure obtained from the structural parameters reported. In some cases the idealized symmetry is indicated. Each polyhedron is described in terms of symbols according to the arrangement of vertices.

 $1^6:4^4 + 2^5:2^4 + 3^5:1^5$ means that, starting from a sixfold vertex at the top, there is a plane of four fourfold and two fivefold vertices followed by another plane of two fourfold and three fivefold vertices and a fivefold vertex at the bottom. The starting point of the description is located either on a symmetry axis or a symmetry plane. An *n*-fold vertex is taken to mean a point where *n* edges meet (for convenience we have not considered the symmetry of the vertex).

Description of alloy structures

In the following sections the structures of the different alloys are given in terms of polyhedral packing. Wherever the structure has been determined the positional parameters have been used to calculate the details of the structure; when the alloy is characterized in terms of structure type the parameters from that type have been taken. It will be seen that the structures can be explained with only a few polyhedra.

V-Al system

The data are given in Table 2. The V atoms have CN 12 in almost all cases except in V_3Al where it is 14 and in V_5Al_8 where one V atom has 13. The icosahedral geometry of CN 12 is found to occur frequently and the geometry for CN 13 and CN 14 can be derived from the icosahedron by capping appropriate edges and by rearrangement of the vertices.

 V_5Al_8 crystallizes in the cubic space group $I\overline{4}3m$ and has 52 atoms per cell. There are two crystallographically independent V atoms, V_1 and V_2 , in the asymmetric unit which belongs to the Cu₅Zn₈ type. V_1 has CN 12 and V_2 13. The polyhedron around V_1 is an icosahedron having $3m-C_{3v}$ symmetry (IV, Fig. 1). The 13verticon (VII, Fig. 1) around V_2 has $mm2-C_{2v}$ symmetry and is bounded by 22 triangular faces.

^{*} Present address: Department of Chemistry, University of Rochester, New York 14627, USA.

The structure of V_5Al_8 , and hence the Cu_5Zn_8 type, can be explained on the basis of the two polyhedra around V_1 and V_2 (Fig. 2). Two V_1 polyhedra share a triangular face with each other and another triangular face with a V_2 polyhedron to form a polyhedron chain, $V_1V_1V_2V_1V_1V_2$, along [011]. Another such chain stacks over the former by sharing the shaded atoms in Fig. 2. Such parallel columns are held together by strong contacts.

VAl₃ belongs to the TiAl₃ structure type and crystallizes in the tetragonal space group I4/mmm. The polyhedron around V is a distorted cubooctahedron with $m3m-O_h$ idealized symmetry. The structure can be explained by the packing of these polyhedra. Cubooctahedra at the same height share quadrangular faces forming a layer. Each cubooctahedron of a similar upper layer shares an edge with each of four cubooctahedra of the lower layer (Fig. 3).

 V_4Al_{23} crystallizes in the hexagonal space group $P6_3/mmc$ with 54 atoms per cell. The asymmetric unit contains two independent V atoms, V_1 and V_2 , each with CN 12. The polyhedra around both are almost regular icosahedra. In the structure three V_2 icosahedra interpenetrate and form a complex unit of $\overline{6}m2-D_{3h}$ symmetry (XXI, Fig. 1) with three centres. The units with centres at z=0.25 share an Al₂ corner (at z=0.12) with each of the three icosahedra around V_1 at 000, 100 and 110. They also share an Al₂ corner at z=0.38 with

Table 1. Description of polyhedra

	CN	Polyhedron	Symmetry	Idealized	No. o ∆	f faces*	Arrangement of vertices	Found in
I	10	Bicapped dodecahedron	$2 - C_2$	$222 - D_2$	16		$2^{5}:2^{5}:2^{4}:2^{5}:2^{5}$	V_2Sn_3
II	10	$\frac{1}{2}$ Icosahedron + $\frac{1}{2}$ Cube	$3 - C_3$	7	10	3	13:34:35	
III	11	Pentacapped trigonal prism	$mm2-C_{2v}$	6m2–D _{3h}	18		13:30:34:30:13	V ₆ Ga ₅
IV	12	Icosahedron	$3m-C_{3v}$		20		33:33:33:33	$V_5Al_8, V_4Al_{23}, VAl_{10},$
								V_7Al_{45} , V_6Ga_7 , V_6Ga_5
v	12	Cubooctahedron	m3m-0 _h	Idealized	8	6	4 ⁴ :4 ⁴ :4 ⁴	VAl_3 , V_8Ga_{41}
VI	12	Bicapped pentagonal prism	$mm2-C_{2v}$	$\overline{10}m2 - D_{5h}$	10	5	15:54:54:15	V ₂ Ga ₅
VII	13	13-verticon of Cu ₅ Zn ₈ type	$mm2-C_{2v}$		22		$1^4:2^5:2^6:4^5:2^5:2^5$	V_5Al_8 , V_6Ga_7
VIII	13	13-verticon of V ₁₁ Ge ₈ type	m-C,		16	3	$1^6:4^4+2^5:2^4+3^5:1^5$	$V_{11}Ge_8$
IX	14	14-verticon of CrSi ₂ type	$2-C_{2}$	$6/mmm-D_{6h}$	4	10	$1^4: 2^4: 2^4: 2^3: 2^3: 2^4: 2^4: 1^4$	VSi ₂
X	14	Kasper (distorted)	$mm2-C_{2m}$	6m-Dea	24		1 ⁶ :6 ⁵ :6 ⁵ :1 ⁶	$A15, V_5Si_3$
XI	14	Kasper-like 14-verticon	3-C		18	3	$1^6:3^5+3^4:3^5+3^4:1^6$	V_5Ge_3 , V_6Si_5 , $V_{11}Ge_8$
XII	14	Rhombic dodecahedron	$m_{3m-O_{L}}$			12	$1^4:4^3:4^4:4^3:1^4$	V(Ga)
XIII	14	14-verticon of Cr., Geo type	m - C		14	5	15.55.54.34	ViiGee
YIV	15	15-verticon of Mn-Si- type	mm^2-C		18	4	14.45.24.25.45.24	V
XV	15	15-verticon of W-Si, type	$m_{-}C$		20	3	$1^{5} \cdot 2^{6} + 1^{5} + 2^{4} \cdot 5^{5} + 2^{4} \cdot 1^{4} + 1^{5}$	V.Si. V.Si. V. Geo
	15	16 verticen of Cr. Go. tune	m Cs		24	วั	$16.45.25 \pm 34.26 \pm 35.15$	V. Ge.
	10	17 verticen of V Si type	$m - C_s$		24	5	$1 \cdot 7 \cdot 2 + 5 \cdot 2 + 5 \cdot 1$ $15 \cdot 76 + 25 \cdot 54 \cdot 75 \cdot 25 \cdot 13$	V Si
	17	17 -verticon of $v_6 si_5$ type	$m - c_s$	$mm2 - C_{2v}$	20	2	1.2 + 5.5.2.5.1 14.45.74.46.75.74.75	V Ge
XVIII	17	17 -verticon of $Cr_{11}Ge_8$ type	$mm2-C_{2v}$		24	3	1 .4 .2 .4 +2 .2 +2	V ₁₁ 0e ₈
VIX	10	Bicanned square antiprism	§2m_D		16		14.45.45.14	For Si in V.Sic, V.Si.
XX	11	11-verticon	1_C	m_C	16	1	15.55.34.25	For Ge, in V. Ge
Л Л	11	11-4010000	$1-c_1$	m Cs	10		1.5.5.2	

* \triangle Triangular; \square Quadrangular.

Fable 2. Crysta	l data of the	V–Al system
-----------------	---------------	-------------

Alloy	Pearson symbol	Structure type Space group	Unit-cell dimensions (Å, ^{**})	Atom	Polyhedra used	Packing in	Crystal data from
V ₃ Al	<i>cP</i> 8	Cr ₃ Si Pm3n	<i>a</i> = 4.699	v	Kasper (14) (D)	Present work	Holleck, Benesovsky & Nowotny (1963)
V_5Al_8	c152	Cu ₅ Zn ₈ (D8 ₂) I43m	a = 9.207	$\begin{array}{c} V_1 \\ V_2 \end{array}$	Icosahedron (D) 13-verticon of Cu ₅ Zn ₈	Present work	Carlsson, Kenny & Wilhelm (1955) Structure type given
VAl ₃	t18	TiAl ₃ (DO ₂₂) I4/mmm	a = 5.343 c = 8.324	v	Cuboctahedron (D)	Present work	Brauer (1943) Structure type given
V ₄ Al ₂₃	hP54	V_4Al_{23} P6 ₃ /mmc	a = 7.692 c = 17.04	$v_1 v_2$	Icosahedron (D) Complex unit of icosahedra	Present work	Smith & Ray (1957, 1960) Structure complete
V ₇ Al ₄₅	mC104	V_7Al_{45} C2/m	a = 25.604 b = 7.6213 c = 11.081 $\beta = 128.9$	$V_1 V_2$	Icosahedron (R) Complex unit	Original paper	Brown (1959) Structure complete
$VAl_{(10)}(a)$	cF176	VAl ₍₁₀₎ Fd3m	a = 14.516	v	Icosahedron (D)	Original paper	Brown (1957) Structure complete
$VAl_{(10)}(b)$	<i>cF</i> 180	Fd3m	a = 14.492	v	Icosahedron (D)	Brown (1957)	Ray & Smith (1957) Structure complete

Fig. 1. Polyhedra arranged according to the number of vertices. I V Polyhedron in V_2Sn_3 (bicapped dodecahedron); II V_1 Polyhedron in $V_8Ga_{41}(\frac{1}{2}icosahedron + \frac{1}{2}cube)$; III V_1 Polyhedron in V_6Ga_5 (pentacapped trigonal prism); IV V_1 Polyhedron in V_5Al_8 (icosahedron of C_{3v} symmetry); V Ga_1 Polyhedron in V_8Ga_{41} (cubooctahedron); VI V Polyhedron in V_2Ga_5 (based on pentagonal pyramid); VII V_2 Polyhedron in V_5Al_8 (13-verticon of C_{2v} symmetry); VIII V_1 Polyhedron in $V_{11}Ge_8$ (13-verticon of C_5 symmetry); IX V Polyhedron in VSi_2 (14-verticon of C_2 symmetry).

С

Fig. 1. (cont.) X V₁ Polyhedron in V₅Si₃ (Kasper polyhedron of C_{2v} symmetry); XI V₁ Polyhedron in V₅Ge₃ (Kasper-like polyhedron of C_3 symmetry); XII V Polyhedron in V(Ga)(14-verticon of O_h symmetry); XII V₅ Polyhedron in V₁₁Ge₈ (14-verticon of C_s symmetry); XIV V₂ Polyhedron in V₅Ge₃ (15-verticon of C_{2v} symmetry); XV V₂ Polyhedron in V₅Si₃ (15-verticon of C_s symmetry); XVI V₃ Polyhedron in V₁₁Ge₈ (16-verticon of C_s symmetry); XVI V₁ Polyhedron in V₆Si₅ (17-verticon of C_s symmetry); XVI V₃ Polyhedron in V₁₁Ge₈ (16-verticon of C_s symmetry); XVI V₁ Polyhedron in V₆Si₅ (17-verticon of C_s symmetry); XVII V₆ Polyhedron in V₁₁Ge₈ (17-verticon of C_{2v} symmetry); XIX Si Polyhedron in V₅Si₃ (bicapped square antiprism); XX Ge₁ Polyhedron in V₁₁Ge₈ (11-verticon); XXI Complex unit of three V₂ polyhedra in V₄Al₂₃ (tricentered complex of D_{3h} symmetry).

Fig. 2. Structure of V₅Al₈ (cI52, Cu₅Zn₈ type).

Fig. 3. Structure of VAl₃ (t18, TiAl₃ type).

each of the three icosahedra around V_1 at $00\frac{1}{2}$, $10\frac{1}{2}$ and $11\frac{1}{2}$. Another tricentred complex related to the former by a c glide shares in a similar way an Al₂ atom z = 0.62 with each of the three icosahedra around V_1 at $00\frac{1}{2}$, $01\frac{1}{2}$, $11\frac{1}{2}$ and an Al₂ at z = 0.88 with each of three V_1 polyhedra around V at 001, 011 and 111 (Fig. 4).

V₇Al₄₅: see original paper (Brown, 1959).

VAl₍₁₀₎ (a) and (b): see original papers (Brown, 1957; Ray & Smith, 1957).

V-Ga system

Table 3 gives the data. V exhibits CN 10 to 14 and has a variety of polyhedral geometries.

 V_3Ga is a representative of the Cr₃Si type with only 8 atoms per unit cell. The V atom has CN 14 and its polyhedron is a distorted Kasper (X, Fig. 1) with $mm2-C_{2v}$ symmetry. The structure of V₃Ga, and hence Cr₃Si-type structures, is built up of face-sharing V polyhedra (Fig. 5). In the perpendicular direction the polyhedra share apices occupied by V atoms forming the V-V chain.

 V_6Ga_5 crystallizes in the hexagonal space group $P6_3/mmc$ and belongs to the α -Ti₆Sn₅ type with 22 atoms per cell. The asymmetric unit contains two independent V atoms, V₁ and V₂, which have CN 11 and 12 respectively. The polyhedron around V₁ is a distorted pentacapped trigonal prism (III, Fig. 1). In addition to the capping of the prism faces, the two triangular faces are also capped, giving 11 vertices. The polyhedron is bounded by 18 triangular faces and has $mm2-C_{2v}$ symmetry. The polyhedron around V₂ is a very distorted icosahedron.

The structure of V_6Ga_5 can be built up by packing the V_2 polyhedra alone. Of the independent Ga atoms, Ga₂ occupies the corners of the cell. Surrounding this atom there are six V_2 polyhedra sharing triangular faces with each other and forming a layer of polyhedra

Fig. 4. Structure of V_4Al_{23} (*hP54*, V_4Al_{23} type).

Alloy	Pearson symbol	Structure type Space group	dimensions (Å)	Atom	Polyhedra used	Packing in	Crystal data from
V ₃ Ga	cP8	Cr3Si Pm3n	a = 4.82	v	Kasper (14) (D)	Present work	Meissner & Schubert (1965) Structure type given
V(Ga)	cI2	W Im3m	a = 3.07	v	14-verticon of W type	Not treated	Meissner & Schubert (1965) Structure type given
V ₆ Ga5	hP22	α-Ti ₆ Sn ₅ P6 ₃ /mmc	a = 8.496 c = 5.176	V ₂	Icosahedron(D)	Present work	van Vucht, Donkersloot & Gomes de Mesquita (1964) Structure type given Meissner & Schubert (1965)
V ₆ Ga7	c152	Cu5Zn8 143m	a = 9.14	$\begin{array}{c} V_1 \\ V_2 \end{array}$	Icosahedron (D) 13-verticon of Cu ₂ Zn ₈ type	Present work	van Vucht <i>et al.</i> (1964) Structure type given
V₂Ga₅	tP14	Mn ₂ Hg ₅ P4/mbm	a = 8.968 c = 2.693	v	Bicapped pentagonal prism	Present work	Reddy, Storm & Knox (1965) Structure complete
V ₈ Ga ₄₁	hR49	V ₈ Ga ₄₁ R3	a = 13.9382 c = 14.8924	$V_1 + V_2$ Ga	$\frac{1}{2}$ Icosahedron + $\frac{1}{2}$ cube Cuboctahedron	Original paper	Girgis <i>et al.</i> (1975) Structure complete

Table 3. Crystal data of the V-Ga system

Unit-cell

Fig. 5. Structure of V_3 Ga (A15 type).

(Fig. 6). Another layer of V_2 polyhedra stacks over the former by sharing the apices occupied by the V_2 atoms, thus forming chains of V_2 atoms parallel to **c**. In the centre of the V_2 polyhedra the Ga atoms form similar chains running through the channel formed by the six V_2 polyhedra, which is also parallel to **c**. Thus two chains, V-V and Ga-Ga, are evident. The V-V and Ga-Ga contact distances along the chain are both 2.59 Å. There are some shorter V-Ga contacts, but no V-V or Ga-Ga contacts less than 2.59 Å.

 V_6Ga_7 belongs to the Cu_5Zn_8 type and hence is similar to V_5Al_8 .

 V_2Ga_5 belongs to the Mn₂Hg₅ type and crystallizes in the tetragonal space group *P4/mbm* with 14 atoms per cell and one V atom per asymmetric unit with CN 12. The polyhedron can be described as a bicapped pentagonal prisms (VI, Fig. 1) having *mm*2- C_{2v} symmetry. The figure has 10 triangular and 5 quadrangular

Fig. 6. Structure of V_6Ga_5 (hP22, α -Ti₆Sn₅ type).

Fig. 7. Structure of V₂Ga₅ (tP14, Mn₂Hg₅ type).

faces. The structure can be built up by edge-sharing of the V polyhedra along c as well as V corners forming V-V chains parallel to this direction (Fig. 7), the atoms being 2.59 Å apart. As with V_6Ga_5 there are some V-Ga contacts which are shorter than the V-V distances.

V₈Ga₄₁: see original paper (Girgis et al., 1975).

V-Si system

Table 4 gives the data. The V atoms show CN 14, 15 and 17.

 V_3Si belongs to the Cr₃Si type (see V_3Ga).

 V_5Si_3 exists in two structural types W_5Si_3 and Mn_5Si_3 . The former is tetragonal, the latter hexagonal. Here we describe the structure of the tetragonal form which crystallizes in the space group I4/mcm with 32 atoms per cell. The asymmetric unit contains two V

Fig. 8. Structure of V₅Si₃ (t132, W₅Si₃ type).

atoms, V_1 and V_2 , having CN 14 and 15 respectively. The 14-verticon around V_1 (X, Fig. 1) is a slightly distorted Kasper polyhedron. The 15-verticon around V_2 (XV, Fig. 1) is bounded by 20 triangular and 3 quadrangular faces and has only mirror symmetry. Of the two Si atoms in the asymmetric unit Si₁ has CN 10. The geometry of the latter (XIX, Fig. 1) is a bicapped square antiprism of $\overline{8}2m-D_{4d}$ symmetry. The figure is bounded by 16 triangular faces.

The packing in the binary alloy can be explained in terms of the V_1 and Si_1 polyhedra. These share edges with each other alternately and extend along **a** and **b** forming a layer. These layers stack one above the other by sharing V and Si apices, forming chains of V_1 and Si_1 atoms along **c** (Fig. 8). The V_1-V_1 and Si_1-Si_1 contacts are 2.39 Å which is the shortest distance in the structure.

Table 4. Crystal data of the V-Si system

Alloy	Pearson symbol	Structure type Space group	Unit-cell dimensions (Å)	Atom	Polyhedra used	Packing in	Crystal data from
V ₃ Si	<i>cP</i> 8	Cr ₃ Si Pm3n	a = 4.725	v	Kasper (14) (D)	Present work	Nowotny, Machenschalk, Kieffer & Benesovsky (1954) Structure type given
V ₅ Si ₃	t132	$W_5Si_3(D8_m)$ I4/mcm	$\begin{array}{rcl} a = & 9 \cdot 44 \\ c = & 4 \cdot 77 \end{array}$	$V_1 \\ Si_1$	Kasper (14) (D) Bicapped square antiprism	Present work	Parthé, Nowotny & Schmid (1955) Structure type given
	hP16	Mn ₅ Si ₃ (D8 ₈) P6 ₃ /mcm	a = 7.135 c = 4.842		Kasper-like (14) see V ₅ Ge ₃	Present work	Pearson (1967)
V ₆ Si ₅	oI44	V ₆ Ši5 Ibam	a = 15.966 b = 7.501 c = 4.858	V ₃ Si	Kasper-like (14) Bicapped square antiprism (D)	Present work	Spinat, Fruchart & Herpin (1970) Structure complete
VSi ₂	hP9	CrSi ₂ (C40) P6 ₂ 22	a = 4.571 c = 6.372	v	14-verticon of CrSi ₂ type	Present work	Wallbaum (1941) Structure qualitative

 V_6Si_5 crystallizes in the orthorhombic space group Ibam with 44 atoms per cell. The asymmetric unit contains three independent V atoms, V_1 , V_2 and V_3 , with CN 17, 15 and 14 respectively. The 17-verticon (XVII, Fig. 1) around V_1 has $m-C_s$ symmetry and is bounded by 20 triangular and 5 quadrangular faces. The polyhedron around V_2 is the same as that of the 15-verticon (XV, Fig. 1) around V_2 in V_5Si_3 (tetragonal form). The 14-verticon (XI, Fig. 1) around V_3 is a Kasper-like polyhedron having $3-C_3$ symmetry. The polyhedron is bounded by 18 triangular and 3 quadrangular faces, as opposed to the 24 triangular faces in the Kasper polyhedron. The idealized polyhedron approximates to the Kasper polyhedron of the 14-verticon found in V_5Si_3 (tetragonal). Of the three independent Si atoms Si₃ has CN 10 and bicapped square antiprism geometry (XIX, Fig. 1) as in V_5Si_3 (tetragonal).

The structure of V_6Si_5 can be explained, as for V_5Si_3 , on the basis of packing of the 14-verticon around V_3 and 10-verticon around Si_3 . The Kasperlike 14-verticons around V_3 share quadrangular faces with each other, forming zigzag chains parallel to **b**. Two such chains are bridged by the bicapped square antiprism sharing edges. Each bicapped square antiprism thus shares one edge with six V_3 polyhedra, forming a layer of polyhedra. These layers stack over each other by sharing the V_3 and Si_3 apices, forming V–V and Si–Si chains parallel to **c** (Fig. 9), the contacts being 2.429 Å. There are some shorter V–Si distances in this structure.

VSi₂ crystallizes in the hexagonal space group $P6_222$ with the CrSi₂ type. The V atom has CN 14; the polyhedron (IX, Fig. 1) is bounded by 4 triangular and 10 quadrangular faces, having $2-C_2$ symmetry. The structure can be described in terms of the packing of these V polyhedra, each being surrounded by six others, four of which share triangular faces and two of which are

edge-sharing, thus building up a layer of V polyhedra. These layers are held together by strong contacts between the layers along c (Fig. 10).

V-Ge system

The data are given in Table 5. The V atoms have CN 13 to 17.

Fig. 9. Structure of V₆Si₅ (oI44, V₆Si₅ type).

Fig. 10. Structure of VSi₂ (hP9, CrSi₂ type).

Table 5. Crystal data of the V-Ge system

Alloy	Pearson symbol	Structure type Space group	dimensions (Å)	Atom	Polyhedra used	Packing in	Crystal data from
V ₃ Ge	cP8	Cr ₃ Si Pm3n	a = 4.769	V	Kasper (14) (D)	Present work	Holleck, Nowotny & Benesovsky (1963b) Structure type given
V ₅ Ge ₃	hP16	Mn_5Si_3 $P6_3/mcm$	a = 7.294 c = 4.97	V ₁	Kasper-like (14)	Present work	Holleck <i>et al.</i> (1963b) Structure type given
V11Ge8	oP76	$Cr_{11}Ge_8$ Pnma	a = 13.398 b = 5.017 c = 16.135		13-verticon of $Cr_{11}Ge_8$ type Kasper-like (14)	Present work	Israiloff, Voellenkle & Wittmann (1974) Structure complete
V ₁₇ Ge ₃₁	<i>tP</i> 184	V ₁₇ Ge ₃₁ P4n2	a = 5.91 c = 83.65	. 2		Not treated	Völlenkle, Preisinger, Nowotny & Wittmann (1967) Structure complete

Table 6. Crystal data of the V-Sn system

Alloy	Pearson symbol	Structure type Space group	Unit-cell dimensions (Å)	Atom	Polyhedra used	Packing in	Crystal data from
V ₃ Sn	cP8	Cr ₃ Si Pm3n	<i>a</i> = 4.96	v	Kasper (14) (D)	Present work	Geller, Matthias & Goldstein (1955) Structure type given
V ₂ Sn ₃	oF48	CuMg2 Fddd	a = 9.498 b = 5.484 c = 18.675	v	Bicapped dodecahedron	Present work	Jonault & Pecocq (1965) Structure qualitative

 V_3 Ge belongs to the Cr₃Si type (see V_3 Ga).

 V_5Ge_3 crystallizes in the hexagonal space group $P6_3/mcm$ and is isotypic with the hexagonal form of V_5Si_3 . Belonging to the Mn_5Si_3 type, it contains 16 atoms per cell and two independent V atoms, V_1 and V_2 , in the asymmetric unit. V_1 has CN 14 and V_2 15. The polyhedron around V_1 is a Kasper-like 14-verticon

OGe OV

Fig. 11. Structure of V₅Ge₃ (hP16, Mn₅Si₃ type).

similar to the one found around V_3 in V_6Si_5 . The 15-verticon has $mm2-C_{2v}$ symmetry and is bounded by 18 triangular and 4 quadrangular faces.

The structure can be explained in terms of the packing of the Kasper-like 14-verticons around V_1 . There are only two such polyhedra in the cell; they share a quadrangular face. Along c these polyhedra share apices forming V–V chains with the V atoms 2.49 Å apart. Six V_1 polyhedra share quadrangular faces with each other and form a hexagonal channel (Fig. 11).

 V_{11} Ge₈ crystallizes in the orthorhombic space group *Pnma*, and belongs to the Cr₁₁Ge₈ type with 76 atoms per cell. There are nine independent V atoms in the cell, one of which has CN 13, three 14, two 15, two 16 and one 17. The 13-verticon around V₁ has *m*-*C_s* symmetry and is bounded by 16 triangular and 3 quadrangular faces (VIII, Fig. 1). The 14-verticons around V₂, V₅ and V₉ are Kasper-like polyhedra found in V₅Ge₃ and V₆Si₅. The 16-verticon around V₃ and V₄ (XVI, Fig. 1) has *m*-*C_s* symmetry and is bounded by 24 triangular and 2 quadrangular faces. The polyhedra around V₇ and V₈ are 15-verticons like those around V₂ in V₅Si₃ and V₆Si₅. The 17-verticon around V₆ has *mm*2-*C_{2v} symmetry* and is bounded by 24 triangular and 3 quadrangular faces (XVIII, Fig. 1).

The structure can be described in terms of the packing of V_1 and V_2 polyhedra. Each V_1 polyhedron shares a quadrangular face with two V_2 polyhedra which in turn share a quadrangular face with another V_2 polyhedron thus forming a closed chain of 10 polyhedra which include two channels (Fig. 12). There are four such channels in the cell in which the Ge₁ atoms form chains parallel to b. The polyhedra stack one 912

Fig. 12. Structure of $V_{11}Ge_8$ (*oP*76, $Cr_{11}Ge_8$ type).

above the other by sharing the apices occupied by V_1 and V_2 , forming chains of V_1 and V_2 atoms along **b** in addition to the Ge₁ atoms. In the V chains the V atoms are 2.45 and 2.44 Å apart while the Ge atoms are 2.503 Å apart. There are some V-Ge contacts of the same magnitude as the contacts in the V-V and Ge-Ge chains.

V-Sn system

The data are given in Table 6. V has CN 10 and 14.

 V_3 Sn belongs to the Cr₃Si type (see V_3 Ga).

 V_2Sn_3 belongs to the CuMg₂ type. It crystallizes in the orthorhombic space group *Fddd* with 48 atoms per cell and one V atom per asymmetric unit. The V has CN 10 and the geometry is a bicapped dodecahedron, one of the three ground-state geometries for decacoordination. The polyhedron has $2-C_2$ symmetry (222- D_2 in the ideal case) and is bounded by 16 triangular faces (I, Fig. 1).

The structure can be explained on the basis of the packing of the V polyhedra. The polyhedra around V at 0 share with the V polyhedra around V at 0.5 corners at y = 0.25 (atoms shaded fully). Every two V polyhedra

Table 7. Crystal data of the V-In, V-Tl, V-Pb systems

Alloy	Pearson symbol	Structure type Space group	Unit-cell dimensions (Å)	Atom	Polyhedra used	Packing in	Crystal data from
V ₃ In	<i>cP</i> 8	Cr₃Si Pm3n	a = 5.42	v	Kasper (14) (D)	Present work	Savitskii, Baron & Efimov (1966)
V ₃ Tl	cP8	Cr ₃ Si Pm3n	a = 5.23	v	Kasper (14) (D)	Present work	Savitskii et al. (1966) Structure type given
V₃Pb	cP8	Cr ₃ Si Pm3n	<i>a</i> = 4·937	V	Kasper (14) (D)	Present work	Holleck, Nowotny & Benesovsky (1963a) Structure type given

Fig. 13. Structure of V₂Sn₃ (oF48, CuMg₂ type).

at the same height share one edge with each other. Along **b** the polyhedra share the Sn atoms at the top (Fig. 13).

V/Pb, V/In and V/Tl systems

Only the A15 phase has been reported in these systems. The data are given in Table 7. For the description of the Cr_3Si (A15) type see V_3Ga .

Conclusions

V has CN 10 to 17 and a wide variety of coordination polyhedra around it.

In almost all cases the structure can be explained on the basis of the packing of V polyhedra alone. In a few cases (V_5Si_3 , V_6Si_5), however, a polyhedron around the 'B' element has to be involved. Hence it seems that one can explain the alloy structures, irrespective of the number of atoms, in terms of packing of one or two polyhedra.

The binary alloy structures considered here can be considered as being of two types: a three-dimensional distribution of discrete polyhedra sharing corners, edges or faces, or a layer-like distribution of polyhedra. In the latter there are chains of V and/or 'B' atoms in the direction perpendicular to the layers.

Icosahedra, Kasper and Kasper-like 14-verticons play a big role in the explanation of these structures, although they belong to different structure types.

The authors thank Professors F. Laves and A. Niggli for their interest and encouragement, Dr G. O. Brunner for discussions, and Mr G. Hollinger and Mr H. Sovilla for assistance during the work. Financial support by the Rare Metals Development Fund and the Swiss National Science Foundation is gratefully acknowledged.

References

- BHANDARY, K. K. & GIRGIS, K. (1977). Monatsh. Chem. 108, 341-349.
- BLACK, P. J. (1956). Acta Met. 4, 172-179.
- BRAUER, G. (1943). Z. Elektrochem. 49, 208-210.

- BROWN, P. J. (1957). Acta Cryst. 10, 133-135.
- BROWN, P. J. (1959). Acta Cryst. 12, 995-1001.
- BRUNNER, G. O. (1977). Acta Cryst. A 33, 226-227.
- BRUNNER, G. O. & LAVES, F. (1971). Z. Techn. Univ. Dresden, 20, 387–390.
- BRUNNER, G. O. & SCHWARZENBACH, D. (1971). Z. Kristallogr. 133, 127–133.
- CARLSSON, O. N., KENNY, D. J. & WILHELM, H. A. (1955). Trans. Amer. Soc. Metals, 47, 520-542.
- FRANK, F. C. & KASPER, J. S. (1958). Acta Cryst. 11, 184-190.
- GELLER, S., MATTHIAS, B. T. & GOLDSTEIN, R. (1955). J. Amer. Chem. Soc. 77, 1502–1504.
- GIRGIS, K., PETTER, W. & PUPP, G. (1975). Acta Cryst. B31, 113-116.
- HOLLECK, H., BENESOVSKY, F. & NOWOTNY, H. (1963). Monatsh. Chem. 94, 477-487.
- HOLLECK, H., NOWOTNY, H. & BENESOVSKY, F. (1963a). Monatsh. Chem. 94, 473-476.
- HOLLECK, H., NOWOTNY, H. & BENESOVSKY, F. (1963b). Monatsh. Chem. 94, 497-501.
- ISRAILOFF, P., VOELLENKLE, H. & WITTMANN, A. (1974). Monatsh. Chem. 105, 1387–1404.
- JONAULT, F. & LECOCQ, M. P. (1965). C. R. Acad. Sci. Paris, 260, 4777–4779.
- KRIPYAKEVICH, P. I. (1960). Sov. Phys. Crystallogr. 5, 69-76.
- MEISSNER, H. G. & SCHUBERT, K. (1965). Z. Metallk. 56, 475–484.
- NOWOTNY, H., MACHENSCHALK, R., KIEFER, R. & BENESOV-SKY, F. (1954). Monatsh. Chem. 85, 241–244.
- PARTHÉ, E., NOWOTNY, H. & SCHMID, H. (1955). Monatsh. Chem. 86, 385–396.
- PEARSON, W. B. (1967). Handbook of Lattice Spacings and Structures of Metals, Vol. II, pp. 2–4. London: Pergamon Press.
- RAY, A. E. & SMITH, J. F. (1957). Acta Cryst. 10, 604-605.
- REDDY, J. M., STORM, A. R. & KNOX, K. (1965). Z. Kristallogr. 121, 441-448.
- SAVITSKII, E. M., BARON, V. V. & EFIMOV, YU. V. (1966). Dokl. Akad. Nauk SSSR, 171, 331-332.
- SMITH, J. F. & RAY, A. E. (1957). Acta Cryst. 10, 169-172.
- SMITH, J. F. & RAY, A. E. (1960). Acta Cryst. 13, 876-884.
- SPINAT, P., FRUCHART, R. & HERPIN, P. (1970). Bull. Soc. Fr. Minéral. Cristallogr. 93, 23-36.
- VOELLENKLE, H., PREISINGER, A., NOWOTNY, H. & WITT-MANN, A. (1967). Z. Kristallogr. 124, 9–25.
- VUCHT, J. H. N. VAN, DONKERSLOOT, H. C. & GOMES DE MESQUITA, A. H. (1964). Philips Res. Rep. 19, 407–421.
- WALLBAUM, H. J. (1941). Z. Metallk. 33, 378-381.